Neural Scene De-rendering

Jiajun Wu¹ Joshua B. Tenenbaum¹ 1 Massachusetts Institute of Technology

Pushmeet Kohli^{2,*}

2 DeepMind

* Work done when the author was with Microsoft Research

Applications

Scene De-rendering

Goal: a compact, interpretable scene representation

Motivation

- An object-based, disentangled representation has wide applications
- Representations learned by current deep nets are hard to interpret

Solution: looping in a forward graphics engine in recognition Advantages

- Graphics engines bring in symbolic representation naturally
- Graphics engines generalize well to a variable number of objects
- The learned representation is rich, and has wide applications.

Scene XML

Inference & Reconstruction

- Graphics engines as generalized decoders
- Visually distinctive images may have similar representations
- Solution: Optimizing in both spaces

Results

Model

(c) Inference

End-to-end fine-tuning with the reconstruction loss (with REINFORCE)

(b) Segment proposals

